Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.

Identifieur interne : 003576 ( Main/Exploration ); précédent : 003575; suivant : 003577

Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.

Auteurs : Johan Uddling [États-Unis] ; Ronald M. Teclaw ; Kurt S. Pregitzer ; David S. Ellsworth

Source :

RBID : pubmed:19773339

Descripteurs français

English descriptors

Abstract

Increasing concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have the potential to affect tree physiology and structure, and hence forest feedbacks on climate. Here, we investigated how elevated concentrations of CO2 (+45%) and O3 (+35%), alone and in combination, affected conductance for mass transfer at the leaf and canopy levels in pure aspen (Populus tremuloides Michx.) and in mixed aspen and birch (Betula papyrifera Marsh.) forests in the free-air CO2-O3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). The study was conducted during two growing seasons, when steady-state leaf area index (L) had been reached after > 6 years of exposure to CO2- and O3-enrichment treatments. Canopy conductance (g(c)) was estimated from stand sap flux, while leaf-level conductance of sun leaves in the upper canopy was derived by three different and independent methods: sap flux and L in combination with vertical canopy modelling, leaf 13C discrimination methodology in combination with photosynthesis modelling and leaf-level gas exchange. Regardless of the method used, the mean values of leaf-level conductance were higher in trees growing under elevated CO2 and/or O3 than in trees growing in control plots, causing a CO2 x O3 interaction that was statistically significant (P < or = 0.10) for sap flux- and (for birch) 13C-derived leaf conductance. Canopy conductance was significantly increased by elevated CO2 but not significantly affected by elevated O3. Investigation of a short-term gap in CO2 enrichment demonstrated a +10% effect of transient exposure of elevated CO2-grown trees to ambient CO2 on g(c). All treatment effects were similar in pure aspen and mixed aspen-birch communities. These results demonstrate that short-term primary stomatal closure responses to elevated CO2 and O3 were completely offset by long-term cumulative effects of these trace gases on tree and stand structure in determining canopy- and leaf-level conductance in pure aspen and mixed aspen-birch forests. Our results, together with the findings from other long-term FACE experiments with trees, suggest that model assumptions of large reductions in stomatal conductance under rising atmospheric CO2 are very uncertain for forests.

DOI: 10.1093/treephys/tpp070
PubMed: 19773339


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.</title>
<author>
<name sortKey="Uddling, Johan" sort="Uddling, Johan" uniqKey="Uddling J" first="Johan" last="Uddling">Johan Uddling</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Natural Resources and Environment, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, USA. johan.uddling@dpes.gu.se</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Natural Resources and Environment, University of Michigan, 440 Church Street, Ann Arbor, MI 48109</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Teclaw, Ronald M" sort="Teclaw, Ronald M" uniqKey="Teclaw R" first="Ronald M" last="Teclaw">Ronald M. Teclaw</name>
</author>
<author>
<name sortKey="Pregitzer, Kurt S" sort="Pregitzer, Kurt S" uniqKey="Pregitzer K" first="Kurt S" last="Pregitzer">Kurt S. Pregitzer</name>
</author>
<author>
<name sortKey="Ellsworth, David S" sort="Ellsworth, David S" uniqKey="Ellsworth D" first="David S" last="Ellsworth">David S. Ellsworth</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19773339</idno>
<idno type="pmid">19773339</idno>
<idno type="doi">10.1093/treephys/tpp070</idno>
<idno type="wicri:Area/Main/Corpus">003454</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003454</idno>
<idno type="wicri:Area/Main/Curation">003454</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003454</idno>
<idno type="wicri:Area/Main/Exploration">003454</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.</title>
<author>
<name sortKey="Uddling, Johan" sort="Uddling, Johan" uniqKey="Uddling J" first="Johan" last="Uddling">Johan Uddling</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Natural Resources and Environment, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, USA. johan.uddling@dpes.gu.se</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Natural Resources and Environment, University of Michigan, 440 Church Street, Ann Arbor, MI 48109</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Teclaw, Ronald M" sort="Teclaw, Ronald M" uniqKey="Teclaw R" first="Ronald M" last="Teclaw">Ronald M. Teclaw</name>
</author>
<author>
<name sortKey="Pregitzer, Kurt S" sort="Pregitzer, Kurt S" uniqKey="Pregitzer K" first="Kurt S" last="Pregitzer">Kurt S. Pregitzer</name>
</author>
<author>
<name sortKey="Ellsworth, David S" sort="Ellsworth, David S" uniqKey="Ellsworth D" first="David S" last="Ellsworth">David S. Ellsworth</name>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="ISSN">0829-318X</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Betula (drug effects)</term>
<term>Betula (metabolism)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Carbon Dioxide (pharmacology)</term>
<term>Ozone (metabolism)</term>
<term>Ozone (pharmacology)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Stomata (drug effects)</term>
<term>Plant Stomata (metabolism)</term>
<term>Plant Stomata (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Betula (effets des médicaments et des substances chimiques)</term>
<term>Betula (métabolisme)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Dioxyde de carbone (pharmacologie)</term>
<term>Ozone (métabolisme)</term>
<term>Ozone (pharmacologie)</term>
<term>Photosynthèse (MeSH)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (métabolisme)</term>
<term>Stomates de plante (effets des médicaments et des substances chimiques)</term>
<term>Stomates de plante (métabolisme)</term>
<term>Stomates de plante (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Betula</term>
<term>Plant Stomata</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Betula</term>
<term>Populus</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Betula</term>
<term>Plant Stomata</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Betula</term>
<term>Dioxyde de carbone</term>
<term>Ozone</term>
<term>Populus</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Stomata</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Photosynthèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Increasing concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have the potential to affect tree physiology and structure, and hence forest feedbacks on climate. Here, we investigated how elevated concentrations of CO2 (+45%) and O3 (+35%), alone and in combination, affected conductance for mass transfer at the leaf and canopy levels in pure aspen (Populus tremuloides Michx.) and in mixed aspen and birch (Betula papyrifera Marsh.) forests in the free-air CO2-O3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). The study was conducted during two growing seasons, when steady-state leaf area index (L) had been reached after > 6 years of exposure to CO2- and O3-enrichment treatments. Canopy conductance (g(c)) was estimated from stand sap flux, while leaf-level conductance of sun leaves in the upper canopy was derived by three different and independent methods: sap flux and L in combination with vertical canopy modelling, leaf 13C discrimination methodology in combination with photosynthesis modelling and leaf-level gas exchange. Regardless of the method used, the mean values of leaf-level conductance were higher in trees growing under elevated CO2 and/or O3 than in trees growing in control plots, causing a CO2 x O3 interaction that was statistically significant (P < or = 0.10) for sap flux- and (for birch) 13C-derived leaf conductance. Canopy conductance was significantly increased by elevated CO2 but not significantly affected by elevated O3. Investigation of a short-term gap in CO2 enrichment demonstrated a +10% effect of transient exposure of elevated CO2-grown trees to ambient CO2 on g(c). All treatment effects were similar in pure aspen and mixed aspen-birch communities. These results demonstrate that short-term primary stomatal closure responses to elevated CO2 and O3 were completely offset by long-term cumulative effects of these trace gases on tree and stand structure in determining canopy- and leaf-level conductance in pure aspen and mixed aspen-birch forests. Our results, together with the findings from other long-term FACE experiments with trees, suggest that model assumptions of large reductions in stomatal conductance under rising atmospheric CO2 are very uncertain for forests.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19773339</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0829-318X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>29</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2009</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.</ArticleTitle>
<Pagination>
<MedlinePgn>1367-80</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tpp070</ELocationID>
<Abstract>
<AbstractText>Increasing concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have the potential to affect tree physiology and structure, and hence forest feedbacks on climate. Here, we investigated how elevated concentrations of CO2 (+45%) and O3 (+35%), alone and in combination, affected conductance for mass transfer at the leaf and canopy levels in pure aspen (Populus tremuloides Michx.) and in mixed aspen and birch (Betula papyrifera Marsh.) forests in the free-air CO2-O3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). The study was conducted during two growing seasons, when steady-state leaf area index (L) had been reached after > 6 years of exposure to CO2- and O3-enrichment treatments. Canopy conductance (g(c)) was estimated from stand sap flux, while leaf-level conductance of sun leaves in the upper canopy was derived by three different and independent methods: sap flux and L in combination with vertical canopy modelling, leaf 13C discrimination methodology in combination with photosynthesis modelling and leaf-level gas exchange. Regardless of the method used, the mean values of leaf-level conductance were higher in trees growing under elevated CO2 and/or O3 than in trees growing in control plots, causing a CO2 x O3 interaction that was statistically significant (P < or = 0.10) for sap flux- and (for birch) 13C-derived leaf conductance. Canopy conductance was significantly increased by elevated CO2 but not significantly affected by elevated O3. Investigation of a short-term gap in CO2 enrichment demonstrated a +10% effect of transient exposure of elevated CO2-grown trees to ambient CO2 on g(c). All treatment effects were similar in pure aspen and mixed aspen-birch communities. These results demonstrate that short-term primary stomatal closure responses to elevated CO2 and O3 were completely offset by long-term cumulative effects of these trace gases on tree and stand structure in determining canopy- and leaf-level conductance in pure aspen and mixed aspen-birch forests. Our results, together with the findings from other long-term FACE experiments with trees, suggest that model assumptions of large reductions in stomatal conductance under rising atmospheric CO2 are very uncertain for forests.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Uddling</LastName>
<ForeName>Johan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Natural Resources and Environment, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, USA. johan.uddling@dpes.gu.se</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Teclaw</LastName>
<ForeName>Ronald M</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pregitzer</LastName>
<ForeName>Kurt S</ForeName>
<Initials>KS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ellsworth</LastName>
<ForeName>David S</ForeName>
<Initials>DS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>09</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>66H7ZZK23N</RegistryNumber>
<NameOfSubstance UI="D010126">Ozone</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029662" MajorTopicYN="N">Betula</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010126" MajorTopicYN="N">Ozone</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19773339</ArticleId>
<ArticleId IdType="pii">tpp070</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tpp070</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Ellsworth, David S" sort="Ellsworth, David S" uniqKey="Ellsworth D" first="David S" last="Ellsworth">David S. Ellsworth</name>
<name sortKey="Pregitzer, Kurt S" sort="Pregitzer, Kurt S" uniqKey="Pregitzer K" first="Kurt S" last="Pregitzer">Kurt S. Pregitzer</name>
<name sortKey="Teclaw, Ronald M" sort="Teclaw, Ronald M" uniqKey="Teclaw R" first="Ronald M" last="Teclaw">Ronald M. Teclaw</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Uddling, Johan" sort="Uddling, Johan" uniqKey="Uddling J" first="Johan" last="Uddling">Johan Uddling</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003576 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003576 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19773339
   |texte=   Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19773339" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020